3.2 Multiple recurrence for weak mixing actions

Definition 3.2.1. Suppose $\Gamma \curvearrowright (X, \mathcal{B}, \mu)$ is a measure preserving action of a countable amenable group Γ on a probability space (X, \mathcal{B}, μ) . Let $F_n \subset \Gamma$ be a Følner sequence, and suppose $A \subset L^{\infty}(X, \mathcal{B}, \mu)$ is a Γ -invariant unital, self-adjoint subalgebra. A state φ on A is said to be **generic** with respect to F_n , and μ if

$$\lim_{n\to\infty}\frac{1}{|F_n|}\Sigma_{\gamma\in F_n^{-1}}\varphi(\sigma_\gamma(f))=\int f\,d\mu,$$

for all $f \in A$.

The example to keep in mind is when $\mathbb{Z} \curvearrowright (\mathbb{T}, \mathcal{B}_{\text{orel}}, \mu)$ is the rotation action of \mathbb{Z} on the circle by an irrational (modulo 2π) angle. Where A is the algebra of continuous functions on \mathbb{T} , and $\varphi \in A^*$ is given by evaluation at some point $z_0 \in \mathbb{T}$. Then it follows from Birkoff's Ergodic Theorem that for almost all choices of z_0 , this state is generic. This justifies the terminology.

Lemma 3.2.2. Suppose $\Gamma \curvearrowright (X, \mathcal{B}, \mu)$ is an ergodic, measure preserving action of a countable amenable group Γ on a probability space (X, \mathcal{B}, μ) . Let $F_n \subset \Gamma$ be a Følner sequence, and suppose $A \subset L^{\infty}(X, \mathcal{B}, \mu)$ is a Γ -invariant unital, self-adjoint subalgebra. If φ is a state on A which is generic with respect to F_n , and μ then

$$\lim_{n\to\infty}\frac{1}{|F_n|}\Sigma_{\gamma\in F_n^{-1}}\sigma_\gamma(f)=\int f\,d\mu,$$

for all $f \in A$, where the convergence is in $L^2(A, \varphi)$.

Proof. Note, that when φ is given by $\varphi(f) = \int f \, d\mu$ then this is just a restatement of von Neumann's Ergodic Theorem.

Let $\varepsilon > 0$ be given, and suppose that $f \in A$. Note that by subtracting the integral we may assume that $\int f d\mu = 0$. Since the action is ergodic it follows from von Neumann's Ergodic Theorem that there exists $n_0 \in \mathbb{N}$ such that

$$\|\frac{1}{|F_{n_0}|} \sum_{\gamma_0 \in F_{n_0}^{-1}} \sigma_{\gamma_0}(f) \|_{L^2(X,\mathcal{B},\mu)}^2 < \varepsilon.$$

Using the triangle, followed by the Cauchy-Schwartz inequality $((|\frac{1}{N}\sum_{n=0}^{N-1}a_n|)^2 \leq (\frac{1}{N}\sum_{n=0}^{N-1}|a_n|)^2 \leq \frac{1}{N}\sum_{n=0}^{N-1}|a_n|^2)$, and then using the fact that φ is generic we then have

$$\begin{split} & \limsup_{n \to \infty} \varphi(|\frac{1}{|F_n|} \Sigma_{\gamma \in F_n^{-1}} \frac{1}{|F_{n_0}|} \Sigma_{\gamma_0 \in F_{n_0}^{-1}} \sigma_{\gamma \gamma_0}(f)|^2) \\ & \leq \limsup_{n \to \infty} \frac{1}{|F_n|} \Sigma_{\gamma \in F_n^{-1}} \varphi(\sigma_{\gamma}(|\frac{1}{|F_{n_0}|} \Sigma_{\gamma_0 \in F_{n_0}^{-1}} \sigma_{\gamma_0}(f)|^2)) \\ & = \|\frac{1}{|F_{n_0}|} \Sigma_{\gamma_0 \in F_{n_0}^{-1}} \sigma_{\gamma_0}(f)\|_{L^2(X,\mathcal{B},\mu)}^2 < \varepsilon. \end{split}$$

Also, for each $\gamma_0 \in F_{n_0}$ we have that

$$\limsup_{n\to\infty} \|\frac{1}{|F_n|} \Sigma_{\gamma \in F_n^{-1}} (\sigma_{\gamma}(f) - \sigma_{\gamma\gamma_0}(g))\|_{\infty} \le \limsup_{n\to\infty} \frac{|F_n \Delta \gamma_0^{-1} F_n|}{|F_n|} = 0.$$

Hence, combining this with the above inequality we have

$$\limsup_{n \to \infty} \varphi(|\frac{1}{|F_n|} \Sigma_{\gamma \in F_n^{-1}} \sigma_{\gamma}(f)|^2) < \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary this shows that

$$\limsup_{n \to \infty} \| \frac{1}{|F_n|} \Sigma_{\gamma \in F_n^{-1}} \sigma_{\gamma}(f) \|_{L^2(A,\varphi)}^2 = 0.$$

Exercise 3.2.3. Generalize the above lemma to arbitrary measure preserving actions. That is to say, suppose $\Gamma \curvearrowright (X, \mathcal{B}, \mu)$ is a measure preserving action of a countable amenable group Γ on a probability space (X, \mathcal{B}, μ) . Let $F_n \subset \Gamma$ be a Følner sequence, and suppose $A \subset L^{\infty}(X, \mathcal{B}, \mu)$ is a Γ -invariant unital, self-adjoint subalgebra such that if $L^{\infty}(X, \mathcal{I}, \mu)$ is the algebra of bounded Γ -invariant functions then $L^{\infty}(X, \mathcal{I}, \mu) \cap A$ is dense in $L^2(X, \mathcal{I}, \mu)$. Suppose φ is a state on A such that for all $f \in A$ we have

$$\lim_{n \to \infty} \frac{1}{|F_n|} \sum_{\gamma \in F_n^{-1}} \varphi(\sigma_{\gamma}(f)) = \int f \, d\mu.$$

Then show that for all $f \in A$ we have

$$\lim_{n \to \infty} \frac{1}{|F_n|} \Sigma_{\gamma \in F_n^{-1}} \sigma_{\gamma}(f) = E_{\mathcal{I}}(f),$$

where the convergence is in $L^2(A,\varphi)$.

Theorem 3.2.4. Let Γ be a countable amenable group with Følner sequence $F_n \subset \Gamma$. Suppose $k \in \mathbb{N}$ and $\Gamma \curvearrowright^{\alpha^j}(X, \mathcal{B}, \mu)$ are weak mixing, measure preserving actions of Γ on a probability space (X, \mathcal{B}, μ) , for $0 \le j < k$. Assume moreover that the actions pairwise commute, i.e., $\alpha_{\gamma}^i \circ \alpha_{\lambda}^j = \alpha_{\lambda}^j \circ \alpha_{\gamma}^i$, for all $i \ne j$, and $\gamma, \lambda \in \Gamma$, and that the actions $\gamma \mapsto \alpha_{\gamma}^i \alpha_{\gamma}^{i+1} \cdots \alpha_{\gamma}^j$ are weak mixing for all $0 \le i \le j < k$. Suppose $f_0, \ldots, f_{k-1} \in L^{\infty}(X, \mathcal{B}, \mu)$. Then we have

$$\lim_{n \to \infty} \frac{1}{|F_n|} \sum_{\gamma \in F_n^{-1}} \sigma_{\gamma}^0(f_0)(\sigma_{\gamma}^0 \sigma_{\gamma}^1(f_1)) \cdots (\sigma_{\gamma}^0 \cdots \sigma_{\gamma}^{k-1}(f_{k-1})) = \prod_{j=0}^{k-1} (\int f_j \, d\mu),$$

where the convergence is in $L^2(X, \mathcal{B}, \mu)$.

Proof. Consider the action $\Gamma \curvearrowright (X^k, \mathcal{B}^{\otimes k}, \mu^k)$ given by $\gamma(x_0, x_1, \dots, x_{k-1}) = (\alpha_\gamma^0 x_0, \alpha_\gamma^0 \alpha_\gamma^1 x_1, \dots, \alpha_\gamma^0 \cdots \alpha_\gamma^{k-1} x_{k-1}).$

Denote by ν the diagonal measure on X^k given by $\nu(A) = \mu(\{x \in X \mid (x, x, \dots, x) \in A\})$. Then we obtain a well defined state φ on $A = L^{\infty}(X, \mathcal{B}, \mu)^{\otimes_{\text{alg}} k}$ by

$$\varphi(\tilde{f}) = \int \tilde{f} \, d\nu,$$

for all $\tilde{f} \in A$.

By Lemma 3.2.2, in order to prove the theorem it is enough to show that φ is generic with respect to F_n , and μ^k . We will do by induction on k.

Note that k=1 is trivial. If this holds for $k \geq 1$, and $f_0, f_1, \ldots, f_k \in L^{\infty}(X, \mathcal{B}, \mu)$, then by Lemma 3.2.2 we have that

$$\lim_{n\to\infty} \frac{1}{|F_n|} \Sigma_{\gamma\in F_n^{-1}} \sigma_{\gamma}^1(f_1) \cdots (\sigma_{\gamma}^1 \cdots \sigma_{\gamma}^k(f_k)) = \prod_{j=1}^k (\int f_j \, d\mu),$$

in $L^2(X, \mathcal{B}, \mu)$.

Multiplying this by f_0 and integrating we obtain

$$\lim_{n\to\infty} \frac{1}{|F_n|} \Sigma_{\gamma\in F_n^{-1}} \int f_0 \sigma_{\gamma}^1(f_1) \cdots (\sigma_{\gamma}^1 \cdots \sigma_{\gamma}^k(f_k)) d\mu = \prod_{j=0}^k (\int f_j d\mu).$$

Applying σ_{γ}^{0} then gives the result.

Corollary 3.2.5. Let $\mathbb{Z} \curvearrowright^T (X, \mathcal{B}, \mu)$ be a weak mixing, measure preserving action on a probability space (X, \mathcal{B}, μ) . Then for each $k \in \mathbb{N}$, and $f_0, f_1, \ldots, f_{k-1} \in L^{\infty}(X, \mathcal{B}, \mu)$ we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \sigma_n(f_0) \sigma_{2n}(f_1) \cdots \sigma_{kn}(f_{k-1}) = \prod_{j=0}^{k-1} (\int f_j \, d\mu),$$

where the convergence is in $L^2(X, \mathcal{B}, \mu)$.

Proof. If we consider the action $\alpha^i: \mathbb{Z} \to \operatorname{Aut}(X, \mathcal{B}, \mu)$ which takes the generator of \mathbb{Z} to T^i , then it follows from Corollary 1.7.7 that these actions satisfy the hypotheses of the above theorem.